Inducible fluorescent speckle microscopy
نویسندگان
چکیده
The understanding of cytoskeleton dynamics has benefited from the capacity to generate fluorescent fiducial marks on cytoskeleton components. Here we show that light-induced imprinting of three-dimensional (3D) fluorescent speckles significantly improves speckle signal and contrast relative to classic (random) fluorescent speckle microscopy. We predict theoretically that speckle imprinting using photobleaching is optimal when the laser energy and fluorophore responsivity are related by the golden ratio. This relation, which we confirm experimentally, translates into a 40% remaining signal after speckle imprinting and provides a rule of thumb in selecting the laser power required to optimally prepare the sample for imaging. This inducible speckle imaging (ISI) technique allows 3D speckle microscopy to be performed in readily available libraries of cell lines or primary tissues expressing fluorescent proteins and does not preclude conventional imaging before speckle imaging. As a proof of concept, we use ISI to measure metaphase spindle microtubule poleward flux in primary cells and explore a scaling relation connecting microtubule flux to metaphase duration.
منابع مشابه
Simultaneous measurement of water flow velocity with fluorescent and speckle imaging technique
The average velocity of water flow has been simultaneously measured with fluorescent and speckle imaging methods. The measured velocities with two methods are in good agreement with each other and it confirms that the speckle imaging method can be used as a confident method to measure the velocity of water flow in a dry leaf. Also the velocity of water flow through thick and thin xylems of a le...
متن کاملFluorescent speckle microscopy (FSM) of microtubules and actin in living cells.
Fluorescent speckle microscopy (FSM), a combination of conventional wide-field fluorescent light microscopy and digital imaging with a low-noise, charge-coupled device (CCD) camera, has been developed to allow visualization of assembly/disassembly dynamics, movement, and turnover of macromolecule assemblies in vivo and in vitro. FSM uses a low level of fluorescent subunits to avoid high backgro...
متن کاملFluorescent speckle microscopy of microtubules: how low can you go?
Fluorescent speckle microscopy (FSM) is a new technique for visualizing the movement, assembly, and turnover of macromolecular assemblies like the cytoskeleton in living cells. In this method, contrast is created by coassembly of a small fraction of fluorescent subunits in a pool of unlabeled subunits. Random variation in association creates a nonuniform "fluorescent speckle" pattern. Fluoresce...
متن کاملFluorescence sectioning with dynamic speckle illumination microscopy
We present a novel fluorescence microscopy technique that provides depth sectioning in thick tissue. The technique relies on dynamic speckle illumination, and depth sectioning is obtained from an a priori knowledge of speckle statistics. We demonstrate nearconfocal imaging in a mouse brain labeled with green fluorescent protein. Confocal microscopy [1] is a popular technique in the bioimaging c...
متن کاملPeriodic patterns of actin turnover in lamellipodia and lamellae of migrating epithelial cells analyzed by quantitative Fluorescent Speckle Microscopy.
We measured actin turnover in lamellipodia and lamellae of migrating cells, using quantitative Fluorescent Speckle Microscopy. Lamellae disassembled at low rates from the front to the back. However, the dominant feature in their turnover was a spatially random pattern of periodic polymerization and depolymerization moving with the retrograde flow. Power spectra contained frequencies between 0.5...
متن کامل